HTML Demo
Manipulate[Column[{
Style[StringTemplate["`` m/s"][x], Blue],
Table["🚗", {i, Floor[x/25]}]//Row
}], {x,10,100}, ContinuousAction->True] // Quiet
Basic ManipulatePlot
ManipulatePlot[{
(*TB[*)Sum[(*|*)(*FB[*)((Sin[2π(2j - 1) x])(*,*)/(*,*)(2j-1))(*]FB*)(*|*), {(*|*)j(*|*),(*|*)1.0(*|*),(*|*)n(*|*)}](*|*)(*1:eJxTTMoPSmNiYGAoZgMSwaW5TvkVmYwgPguQCCkqTQUAeAcHBQ==*)(*]TB*),
(*TB[*)Sum[(*|*)(*FB[*)((Cos[2π(2j - 1) x])(*,*)/(*,*)(2j-1))(*]FB*)(*|*), {(*|*)j(*|*),(*|*)1.0(*|*),(*|*)n(*|*)}](*|*)(*1:eJxTTMoPSmNiYGAoZgMSwaW5TvkVmYwgPguQCCkqTQUAeAcHBQ==*)(*]TB*)
}, {x, -1,1}, {{n,4}, 1,7, 1}]
Module[{r},
ManipulatePlot[{
(*TB[*)Sum[(*|*)(*FB[*)((Sin[2π(2j - 1) x])(*,*)/(*,*)(2j-1))(*]FB*)(*|*), {(*|*)j(*|*),(*|*)1.0(*|*),(*|*)n(*|*)}](*|*)(*1:eJxTTMoPSmNiYGAoZgMSwaW5TvkVmYwgPguQCCkqTQUAeAcHBQ==*)(*]TB*),
(*TB[*)Sum[(*|*)(*FB[*)((Cos[2π(2j - 1) x])(*,*)/(*,*)(2j-1))(*]FB*)(*|*), {(*|*)j(*|*),(*|*)1.0(*|*),(*|*)n(*|*)}](*|*)(*1:eJxTTMoPSmNiYGAoZgMSwaW5TvkVmYwgPguQCCkqTQUAeAcHBQ==*)(*]TB*)
}, {x, -1,1}, {{n,4}, 1,7, 1},
Epilog -> {
Table[{
RandomColor[], Circle[RandomReal[{-1,1}, 2], r // Offload]
}, {10}]
}, "UpdateFunction" -> Function[n,
r = (n - 1)/5.0;
True
]]
]
Live Animate Widget
Animate[Series[Cos[x], {x,0,n}], {n,2, 10, 1}, AnimationRate->3]
Gaussian Curve
ClearAll[generate];
generate[{x_, y_}, k_] := Table[{t, y Exp[- (*FB[*)(((*SpB[*)Power[(x - t)(*|*),(*|*)2](*]SpB*))(*,*)/(*,*)(2 k))(*]FB*)]}, {t,-1,1, 0.03}];
udata = {{-1,0}, {1,0}};
Graphics[{
Cyan, Line[udata // Offload], Red, PointSize[0.05],
EventHandler[Point[{0,0.5}], {
"drag" -> ((udata = generate[#, 0.1])&)
}]
}, PlotRange->{{-1,1}, {0,1}}, ImagePadding->None, Axes->{True, False}, ImageSize->Small]
Mouse Follower
getLines[xy_] := With[{dir = 0.05 Normalize[xy]},
(Table[W[{{i,j}, {i,j} + dir / ((*SpB[*)Power[Norm[{i,j}-xy](*|*),(*|*)2](*]SpB*) + 0.1)}], {i, -1,1,0.2}, {j, -1,1,0.2}] // Flatten) /. {W -> Identity}
];
Module[{lines = getLines[{0.01,0.01}]},
Graphics[{
White,
EventHandler[
Rectangle[{-2,-2}, {2,2}],
{"mousemove"->Function[xy, lines = getLines[xy]]}
],
Black,
Line[lines // Offload]
}, "TransitionDuration"->270, "TransitionType"->"Linear", PlotRange->{{-1,1}, {-1,1}}]
]
Other examples
Manipulate[
Plot3D[Sin[n x] Cos[n y], {x,-1,1}, {y,-1,1}]
, {n, 1, 5, 1}]