Data Visualization
A standard set of function inherited from Wolfram Standard Library. Most examples were adapted from the official pages of Wolfram Language Documentation Center. The algorithms and implementations of those functions are the intellectual property of Wolfram Research. WLJS Team only reimplemented underlying low-level primitives such as Line
, Point
, Polygon
, and etc.
Plot
The most basic option for plotting analythical functions
Plot[(*FB[*)((1)(*,*)/(*,*)(x))(*]FB*), {x,0,1}]
(*VB[*)(FrontEndRef["ff324093-aadd-4bcc-8004-4cc459036013"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKp6UZG5kYWBrrJiampOiaJCUn61oYGJjomiQnm5haGhibGRgaAwCJ2RVf"*)(*]VB*)
Axes and Styling
This is quite limited, but can work well in most cases
Plot[(*FB[*)((1)(*,*)/(*,*)(x))(*]FB*), {x,0,1}, PlotStyle->Red, Frame->True, FrameLabel->{"x-axis", "y-axis"}, FrameStyle->Directive[FontSize->14], FrameTicksStyle->Directive[FontSize->14], Epilog->{Cyan, Line[{{-10,10}, {10,10}}]} ]
(*VB[*)(FrontEndRef["3b2d8cd0-48d4-4987-97a5-11c47f9e0924"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKGycZpVgkpxjomlikmOiaWFqY61qaJ5rqGhomm5inWaYaWBqZAACAEBUm"*)(*]VB*)
Fill between two curves
Plot[{Sin[x] + x/2, Sin[x] + x}, {x, 0, 10}, Filling -> {1 -> {2}}]
(*VB[*)(FrontEndRef["8d891115-58ee-47f7-a4a5-f97e41a9db8a"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKW6RYWBoaGprqmlqkpuqamKeZ6yaaJJrqplmap5oYJlqmJFkkAgB9iBW7"*)(*]VB*)
Plot multiple filled curves
Plot[Evaluate[Table[BesselJ[n, x], {n, 4}]], {x, 0, 10}, Filling -> Axis]
(*VB[*)(FrontEndRef["c7d8775d-91a5-4dec-86a2-c7aaea90d885"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKJ5unWJibm6boWhommuqapKQm61qYJRrpJpsnJqYmWhqkWFiYAgCLsBYV"*)(*]VB*)
Parameteric plots
Accepts function, which returns pair
ParametricPlot[{Sin[3t], Cos[3t]} (*SpB[*)Power[E(*|*),(*|*)-t](*]SpB*), {t, 0, Pi}]
(*VB[*)(FrontEndRef["c73f4896-9651-4143-863e-5c5c16b7f55c"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKJ5sbp5lYWJrpWpqZGuqaGJoY61qYGafqmiabJhuaJZmnmZomAwBzART7"*)(*]VB*)
Date plots
Treats the series of points with values yi at a sequence of dates
{DateObject[{2022, 12}], DateObject[{2023, 12}], Now}
{(*VB[*)(DateObject[{2022,12},"Month"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwSSxJ9U/KSk0uCUnNLcgB8oK5gMJKLqnJCkYGRkZKAKJzDjo="*)(*]VB*),(*VB[*)(DateObject[{2023,12},"Month"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwSSxJ9U/KSk0uCUnNLcgB8oK5gMJKLqnJCkYGRsZKAKJ1Djs="*)(*]VB*),(*VB[*)(DateObject[{2024,9,4,11,24,1.504609`6.9299986441629},"Instant","Gregorian",2.`])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwSSxJ9U/KSk0uCUnNLcgB8oIlgcJK4akpCiYKwakFCkYGRiYKhoZWRiZWBoZKAJrpEbg="*)(*]VB*)}
DateListPlot[Transpose[{%, {1,2,3}}]]
(*VB[*)(FrontEndRef["e71c7d28-59fd-4eb8-8e63-2b40985ebd3f"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKp5obJpunGFnomlqmpeiapCZZ6FqkmhnrGiWZGFhamKYmpRinAQCIaxXr"*)(*]VB*)
Example data
DateListPlot[FinancialData["IBM", "Jan. 1, 2004"]]
(*VB[*)(FrontEndRef["f6aadbd2-fa86-407e-a3ad-d6f364c855c9"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKp5klJqYkpRjppiVamOmaGJin6iYaJ6boppilGZuZJFuYmiZbAgCbaRZp"*)(*]VB*)
List plots
Plot an array of numbers or a time-series
ListLinePlot[{1, 1, 2, 3, 5, 8}, Filling -> Axis]
(*VB[*)(FrontEndRef["f3abfcf7-eec7-4c94-97e9-c917ed92357c"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKpxknJqUlp5nrpqYmm+uaJFua6Fqap1rqJlsamqemWBoZm5onAwCcshZV"*)(*]VB*)
Plot multiple traces
ListLinePlot[Table[Accumulate[RandomReal[{-1, 1}, 250]], {3}], Filling -> Axis, PlotLegends -> {"one", "two", "three"}]
(*VB[*)(FrontEndRef["aabbffff-d64b-46f5-9778-a5cb89b81894"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKJyYmJaUBgW6KmUmSrolZmqmupbm5hW6iaXKShWWShaGFpQkAoVgWUQ=="*)(*]VB*)
Plot points
ListPlot[ RandomVariate[BinormalDistribution[{4, 4}, {1, 1}, 0.5], 750]]
(*VB[*)(FrontEndRef["3fb5720e-a7ed-4de2-a6fd-941b90271c1c"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKG6clmZobGaTqJpqnpuiapKQa6SaapaXoWpoYJlkaGJkbJhsmAwCOhhX8"*)(*]VB*)
Plot several data as lists with legend
ListPlot[ Table[{k, PDF[BinomialDistribution[50, p], k]}, {p, {0.3, 0.5, 0.8}}, {k, 0, 50}], Filling -> Axis, PlotLegends -> {0.3, 0.5, 0.8}]
(*VB[*)(FrontEndRef["d40e0030-9a33-4062-b559-75e09c3a2f8f"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKp5gYpBoYGBvoWiYaG+uaGJgZ6SaZmlrqmpumGlgmGycapVmkAQBzWRUL"*)(*]VB*)
Plot a curve that corresponds to a smooth path through the specified points
ListCurvePathPlot[RandomReal[{0, 10}, {2000, 2}]]
(*VB[*)(FrontEndRef["fe16c661-ba28-4465-8de9-2405379cc4f8"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKp6UamiWbmRnqJiUaWeiamJiZ6lqkpFrqGpkYmBqbWyYnm6RZAACBJxVV"*)(*]VB*)