Three-dimensional plots
Most examples were adapted from the official pages of Wolfram Language Documentation Center.
The algorithms and implementations of those functions are the intellectual property of Wolfram Research. WLJS Team only reimplemented underlying low-level primitives such as `Line`, `Point`, `Polygon`, and etc.
Spherical Plot
An example of
Download original notebook(*SbB[*)Subscript[Y(*|*),(*|*)k_,q_](*]SbB*)[θ_, ϕ_] := SphericalHarmonicY[k,q, θ, ϕ]
SphericalPlot3D[(*SbB[*)Subscript[Y(*|*),(*|*)4,0](*]SbB*)[θ, ϕ], {θ,0,π}, {ϕ,0,2π}]
(*VB[*)(FrontEndRef["ca72fb9b-551b-4cc5-a054-efa9bdbee236"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKJyeaG6UlWSbpmpoaJumaJCeb6iYamJropqYlWialJKWmGhmbAQCUWRaL"*)(*]VB*)
Vector Plot 3D
Visualize vector field in 3D
VectorPlot3D[{x, y, z}, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}]
(*VB[*)(FrontEndRef["588f2ea9-afd7-45b4-8d86-be3c5106bb45"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKm1pYpBmlJlrqJqalmOuamCaZ6FqkWJjpJqUaJ5saGpglJZmYAgCLmBXg"*)(*]VB*)
Plot 3D
Generates a three-dimensional plot
Plot3D[Im[ArcSin[(x + I y)^4]], {x, -2, 2}, {y, -2, 2}, Mesh -> None, PlotStyle -> Directive[Yellow, Opacity[0.8]], ExclusionsStyle -> {None, Red} ]
(*VB[*)(FrontEndRef["abe5f76c-b695-4001-a747-28bddb668b90"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKJyalmqaZmyXrJplZmuqaGBgY6iaam5jrGlkkpaQkmZlZJFkaAACJ3hWp"*)(*]VB*)
Another example
NDSolve[{D[u[t, x], t] == D[u[t, x], x, x], u[0, x] == 0, u[t, 0] == Sin[t], u[t, 5] == 0}, u, {t, 0, 10}, {x, 0, 5}]; Plot3D[Evaluate[u[t, x] /. %], {t, 0, 10}, {x, 0, 5}, PlotRange -> All, ColorFunction -> "SunsetColors"]
(*VB[*)(FrontEndRef["1b3a992d-5c68-42ab-a966-b967f81c32c6"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKGyYZJ1paGqXomiabWeiaGCUm6SZampnpJlmamadZGCYbGyWbAQCCaxV/"*)(*]VB*)
A list version is also supporte
data = Table[Sin[j^2 + i], {i, 0, Pi, Pi/5}, {j, 0, Pi, Pi/5}]; ListPlot3D[data, InterpolationOrder -> 3, ColorFunction -> "SouthwestColors", BoxRatios->{1,1,0.5}]
(*VB[*)(FrontEndRef["d29a6ad5-357c-4485-a7da-ad735077e6ce"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKpxhZJpolppjqGpuaJ+uamFiY6iaapyTqJqaYG5samJunmiWnAgCG3BXc"*)(*]VB*)
Plot3D[Sin[Sqrt[x^2 + y^2]], {x, -6, 6}, {y, -6, 6}, PlotRange -> All, Mesh -> None, ColorFunction -> "Rainbow"]
(*VB[*)(FrontEndRef["9910a721-a3a6-4be7-9538-5641b7f075f5"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKW1oaGiSaGxnqJhonmumaJKWa61qaGlvompqZGCaZpxmYm6aZAgB14hTt"*)(*]VB*)
Contour Plot 3D
A 3D version of ContourPlot
function
ContourPlot3D[x^3 + y^2 - z^2, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}]
(*VB[*)(FrontEndRef["22b03336-28e2-470b-95c1-5add1a541cc8"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKGxklGRgbG5vpGlmkGumamBsk6VqaJhvqmiampBgmmpoYJidbAABy6hUw"*)(*]VB*)